271 research outputs found

    The case for negative senescence

    Get PDF
    Negative senescence is characterized by a decline in mortality with age after reproductive maturity, generally accompanied by an increase in fecundity. Hamilton (1966) ruled out negative senescence: we adumbrate the deficiencies of his model. We review empirical studies of various plants and some kinds of animals that may experience negative senescence and conclude that negative senescence may be widespread, especially in indeterminate-growth species for which size and fertility increase with age. We develop optimization models of life-history strategies that demonstrate that negative senescence is theoretically possible. More generally, our models contribute to understanding of the evolutionary and demographic forces that mold the agetrajectories of mortality, fertility and growth.

    Comparing axiomatizations of free pseudospaces

    Get PDF
    Independently and pursuing different aims, Hrushovski and Srour (On stable non-equational theories. Unpublished manuscript, 1989) and Baudisch and Pillay (J Symb Log 65(1):443–460, 2000) have introduced two free pseudospaces that generalize the well know concept of Lachlan’s free pseudoplane. In this paper we investigate the relationship between these free pseudospaces, proving in particular, that the pseudospace of Baudisch and Pillay is a reduct of the pseudospace of Hrushovski and Srour

    Talaria: Continuous Drag & Drop on a Wall Display

    Get PDF
    International audienceWe present an interaction technique combining tactile actions and Midair pointing to access out-of-reach content on large displays without the need to walk across the display. Users can start through a Touch gesture on the display surface and finish Midair by pointing to push content away or inversely to retrieve a content. The technique takes advantage of wellknown semantics of pointing in human-to-human interaction.These, coupled with the semantics of proximal relations and deictic proxemics make the proposed technique very powerful as it leverages on well-understood human-human interaction modalities. Experimental results show this technique to outperform direct tactile interaction on dragging tasks. From our experience we derive four guidelines for interaction with large-scale displays

    Local chromatic number of quadrangulations of surfaces

    Get PDF
    The local chromatic number of a graph G, as introduced in [4], is the minimum integer k such that G admits a proper coloring (with an arbitrary number of colors) in which the neighborhood of each vertex uses less than k colors. In [17] a connection of the local chromatic number to topological properties of (a box complex of) the graph was established and in [18] it was shown that a topological condition implying the usual chromatic number being at least four has the stronger consequence that the local chromatic number is also at least four. As a consequence one obtains a generalization of the following theorem of Youngs [19]: If a quadrangulation of the projective plane is not bipartite it has chromatic number four. The generalization states that in this case the local chromatic number is also four. Both papers [1] and [13] generalize Youngs’ result to arbitrary non-orientable surfaces replacing the condition of the graph being not bipartite by a more technical condition of an odd quadrangulation. This paper investigates when these general results are true for the local chromatic number instead of the chromatic number. Surprisingly, we find out that (unlike in the case of the chromatic number) this depends on the genus of the surface. For the non-orientable surfaces of genus at most four, the local chromatic number of any odd quadrangulation is at least four, but this is not true for non-orientable surfaces of genus 5 or higher. We also prove that face subdivisions of odd quadrangulations and Fisk triangulations of arbitrary surfaces exhibit the same behavior for the local chromatic number as they do for the usual chromatic number

    Coevolution of relative brain size and life expectancy in parrots

    Get PDF
    Previous studies have demonstrated a correlation between longevity and brain size in a variety of taxa. Little research has been devoted to understanding this link in parrots; yet parrots are well-known for both their exceptionally long lives and cognitive complexity. We employed a large-scale comparative analysis that investigated the influence of brain size and life-history variables on longevity in parrots. Specifically, we addressed two hypotheses for evolutionary drivers of longevity: the cognitive buffer hypothesis, which proposes that increased cognitive abilities enable longer lifespans, and the expensive brain hypothesis, which holds that increases in lifespan are caused by prolonged developmental time of, and increased parental investment in, large-brained offspring. We estimated life expectancy from detailed zoo records for 133 818 individuals across 244 parrot species. Using a principled Bayesian approach that addresses data uncertainty and imputation of missing values, we found a consistent correlation between relative brain size and life expectancy in parrots. This correlation was best explained by a direct effect of relative brain size. Notably, we found no effects of developmental time, clutch size or age at first reproduction. Our results suggest that selection for enhanced cognitive abilities in parrots has in turn promoted longer lifespans

    Towards a verified compiler prototype for the synchronous language SIGNAL

    Get PDF
    International audienceSIGNAL belongs to the synchronous languages family which are widely used in the design of safety-critical real-time systems such as avionics, space systems, and nuclear power plants. This paper reports a compiler prototype for SIGNAL. Compared with the existing SIGNAL compiler, we propose a new intermediate representation (named S-CGA, a variant of clocked guarded actions), to integrate more synchronous programs into our compiler prototype in the future. The front-end of the compiler, i.e., the translation from SIGNAL to S-CGA, is presented. As well, the proof of semantics preservation is mechanized in the theorem prover Coq. Moreover, we present the back-end of the compiler, including sequential code generation and multithreaded code generation with time-predictable properties. With the rising importance of multi-core processors in safety-critical embedded systems or cyber-physical systems (CPS), there is a growing need for model-driven generation of multithreaded code and thus mapping on multi-core. We propose a time-predictable multi-core architecture model in architecture analysis and design language (AADL), and map the multi-threaded code to this model

    Low-fidelity fabrication: Speeding up design iteration of 3D objects

    Full text link
    Low-fidelity fabrication systems speed up rapid prototyping by printing intermediate versions of a prototype as fast, low-fidelity previews. Only the final version is fabricated as a full high-fidelity 3D print. This allows designers to iterate more quickly-achieving a better design in less time. Depending on what is currently being tested, low-fidelity fabrication is implemented in different ways: (1) faBrickator allows for a modular approach by substituting sub-volumes of the 3D model with building blocks. (2) WirePrint allows for quickly testing the shape of an object, such as the ergonomic fit, by printing wireframe structures. (3) Platener preserves the technical function by substituting 3D print with laser-cut plates of the same size and thickness. At our CHI'15 interactivity booth, we give a combined live demo of all three low-fidelity fabrication systems- putting special focus on our new low-fidelity fabrication system Platener (paper at CHI'15)
    corecore